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The Crothers metrics [1] represent a denumerable infinity of Schwarzschild-
like metrics that describe the curvature a point mass exerts on spacetime. In
contrast to the black hole metric, these metrics are continuous down to, but not
including, the point mass itself. The present paper compares the Corthers and
black-hole metrics in terms of the relative curvature the point mass exerts on
the Planck vacuum (PV) negative-energy state [2], and connects the general-
relativity calculations to the PV constants. The results cast serious doubt on
the mathematical and physical validity of the black hole model.

1 Planck Vacuum Constants

The concept of the universe envisioned here consists of free space, plus the
visible universe, plus the electromagnetic component of the quantum vacuum
[3] [4], and an invisible (i.e., not directly observable) vacuum state from which
the universe emerges. The free-space electric and magnetic permittivities

ε =
1

µ
=

e2
∗

r∗m∗c2
= 1 (1)

imply that that supporting vacuum state is the PV [2], where e∗, m∗, r∗, and c
are respectively the bare charge, the Planck mass, the Planck-particle Compton
radius, and the speed of light. In addition, the two forces

e2
∗

r2
∗

and
c4

G
=

m∗c
2

r∗
(2)

represent the maximum polarization and curvature forces sustainable by the
PV, where G is Newton’s gravitational constant.

The force difference
e2
∗

r2
−

m∗c
2

r
= 0 (3)

vanishes at r = r∗ and leads to the Compton relation

r∗m∗c
2 = e2

∗
= ch̄ (4)

associated with the PV, where h̄ is the (reduced) Planck constant. The re-
lationships in (2) and (4) between the primary PV constants (e∗, m∗, r∗) are
used repeatedly in what follows to rid the general-relativity equations of the
secondary constant G.

1To be published in Galilean Electrodynamics.

1



2 Crothers Metrics

The general solution to the Einstein field equations [1] for a point mass m at
r = 0 consists of the infinite collection (n = 1, 2, 3, · · ·) of Schwarzschild-like
metrics that are non-singular for all r > 0:

ds2 = (1 − α/Rn) c2dt2 −
(r/Rn)2n−2 dr2

1 − α/Rn
− R2

n (dθ2 + sin2 θ dφ2) (5)

where

α = 2
mG

c2
= 2

mc2

m∗c2/r∗
= 2rnr (6)

Rn = (rn + αn)1/n = r(1 + 2nnn
r )1/n = α(1 + 1/2nnn

r )1/n (7)

and, from the PV theory [5]

nr ≡
mc2/r

m∗c2/r∗
(8)

where r is the coordinate radius from the point mass to the field point of interest.
The n-ratio nr is the relative stress the point mass exerts on the PV, its allowable
range being 0 ≤ nr < 1 for which

α

Rn
< 1 . (9)

From the final expression in (7) it is clear that α/Rn vanishes as r increases
without limit. The original Schwarzschild metric [6] corresponds to n = 3.

The n-ratio nr is a direct measure of spacetime flatness, where spacetime is
flat for nr = 0 (r → ∞). Asymptotic flatness [7, p.55] thus corresponds to

nr ≈ 0 or
mc2

r
�

m∗c
2

r∗
(10)

m∗c
2/r∗ being the maximum curvature force. For a white dwarf and a neutron

star, e.g., the n-ratios at the stars’ surfaces are nr ∼ 0.0002 and nr ∼ 0.2
respectively.

The magnitude of the relative coordinate velocity of a photon approaching
or leaving the point mass in a radial direction is calculated from the metric
coefficients in (5) by setting ds = 0, dθ = 0, dφ = 0, and leads to

βn(nr) =
dr

c dt
=

(

g00

−g11

)1/2

=

[

1 − α/Rn

(r/Rn)2n−2/(1− α/Rn)

]1/2

(11)

= (1 + 2nnn
r )(1−1/n)

(

1 −
2nr

(1 + 2nnn
r )1/n

)

(12)
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whose plot as a function of nr in Figure 1 shows βn’s behavior as n increases
from 1 to 20. The vertical and horizontal axes run from 0 to 1. The limiting
case as n increases without limit is

β∞(nr) =

{

1 − 2nr, 0 ≤ nr ≤ 0.5
0, 0.5 ≤ nr < 1 .

(13)

That is, the photon does not propagate (β∞(nr) = 0) in the region 0.5 ≤ nr < 1
for the limiting case.

3 Black Hole Metric

Assuming that
Rn = r (14)

in (5) leads to the black hole metric [7, p.15]

ds2 = (1 − rs/r) c2dt2 −
dr2

(1 − rs/r)
− r2 (dθ2 + sin2 θ dφ2)

= (1 − 2nr) c2dt2 −
dr2

(1 − 2nr)
− r2 (dθ2 + sin2 θ dφ2) (15)

where the so-called Schwarzschild radius is

rs = 2
mG

c2
= 2

mc2

m∗c2/r∗
= 2rnr . (16)

The interior (r < rs) is called the black hole. Within this black hole is the naked
singularity at the coordinate radius r = 0 where the black-hole mass is assumed
to reside—hiding this singularity is the event-horizon (at nr = 0.5) with the
Schwarzschild radius r = rs.

The singularity in the metric coefficient g11 = −1/(1−2nr) is only apparent
and can be removed. Nevertheless it proves interesting to formally calculate
the relative velocity of a radially directed photon from (15) by setting ds = 0,
dθ = 0, and dφ = 0:

β(nr) =
dr

c dt
=

(

g00

−g11

)1/2

=

[

1 − 2nr

1/(1 − 2nr)

]1/2

= |1 − 2nr| (17)

where β(0) = β(1) = 1 and β(0.5) = 0. Thus the incoming photon velocity
decreases from c at infinity to zero at nr = 0.5 only to increase to c again at the
position of the point mass! This clear violation of common sense emphasizes the
fact that the metric (15) needs to be transformed to another set of coordinates
to be more useful.

The proper (“as seen from a great distance”) circumference, area, and ac-
celeration at the black hole surface (event horizon) are [7, pp.19,19,43]

Circumference = 4π
mG

c2
= 2πr · 2nr (18)
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Area = 16π

(

mG

c2

)2

= 4πr2 · (2nr)
2 (19)

and

Acceleration =
mG

c2r2

(

1 − 2
mG

cr

)

−1/2

=
c2

r

nr

(1 − 2nr)1/2
(20)

where r = rs and nr = 0.5 in (18)–(20).

4 Comments and Conclusions

For the reader needing more evidence that the equations of general relativity are
tied to the PV, it may help to take a look at how the Kerr-Newman black-hole
area A [7, p.105] [8] for a spinning and charged mass point is normalized in the
PV theory. Before replacing the secondary constant G in the area equation by
the primary constants (e∗, m∗, r∗) from the PV theory, the equation looks like

A =
4πG

c4

[

2m2G − Q2 + 2(m4G2 − c2J2 − m2Q2G)1/2
]

(21)

where Q and J are the charge and angular momentum of the mass m.
By using the relations in equations (2) and (4), it is straightforward to

transform (21) into the following equation

A

4πr2
∗

= 2

(

m

m∗

)2

−

(

Q

e∗

)2

+2

[

(

m

m∗

)4

−

(

J

r∗m∗c

)2

−

(

m

m∗

)2 (

Q

e∗

)2
]1/2

(22)

where each ratio in the equation is dimensionless. In addition, all of the terms
are properly normalized; the area A by the area 4πr2

∗
, the angular momentum

J by the angular momentum r∗m∗c, and so forth. So ridding (21) of G connects
the general-relativity calculations to the PV normalizing constants in a dramatic
way. Equation (22) reduces as it should to equation (19) when Q = 0 and J = 0.

Figure 1 shows that photon velocities decrease monotonically in the range
0.5 ≤ nr < 1 as the series index n increases, vanishing completely as n increases
without limit and shutting off that range from photon propagation. Further-
more, there is a discontinuity of +2 in the slope of this limiting-velocity curve
as nr increases from 0.5− to 0.5+. Therefor, as there is nothing in the physics of
the Crothers metrics to suggest such a discontinuity, the ‘nr → ∞’ curve should
be discarded.

The appearance of the “black hole” range described in the previous para-
graph is somewhat analogous to the black-hole-model case for the same region,
although that is where the similarity ends. In the black hole model [7, p.48] the
event horizon acts as a one-way “membrane” through which exterior photons
pass on their way to the naked singularity at r = 0.

The black hole model plays a central role in many important astrophysical
and cosmological calculations [7, Sec. 1.2] and thus its mathematical validity
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should be of serious concern. In particular the singularity-introducing substitu-
tion

Rn = (rn + αn)1/n −→ Rn = r (14)

used in (5) to arrive at the black hole metric in (15) is troubling and renders
the entire black hole model untenable.
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Figure 1. The graph shows the relative photon velocity βn(nr) plotted as a
function of the n-ratio nr for various indices n. Both axes run from 0 to 1. The
limiting case n → ∞ yields β∞(nr) = 1 − 2nr (0 ≤ nr ≤ 0.5) and β∞(nr) = 0
(0.5 ≥ nr < 1). The original Schwarzschild metric corresponds to n = 3.
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