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Abstract

This paper pursues the idea that nature is controlled by one universal
superforce and suggests a unification of the Newton and Coulomb forces
under this universal force. Calculations yield a super-particle (SP) whose
parameters define the gravitational, Planck, and fine-structure constants,
plus the permittivity and permeability of free space. The superforce is
seen to be the source of the zero-point (ZP) electromagnetic fields.

Keywords: Compton wavelength, fine-structure constant, free-space vac-
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1 Introduction

Davies’ observations that “...investigations point towards a compelling idea, that
all nature is ultimately controlled by the activities of single superforce.”, and
that an energetic vacuum “...holds the key to a full understanding of the forces of
nature.” [1] are inspired in part by the negative energy states and anti-particles
accompanying the second quantization of all single particle fields, and in part by
the ubiquitous and unavoidable presence of the ZP vacuum fields [2]. That the
vacuum states may be polarizable is generally accepted and some calculations
[3] suggest that this polarizability may lead to an explanation for the curvature
of space.

The Einstein tensor-field equation for gravity [4]

Rµν − (1/2)gµνR + gµνΛ = (8πG/c4)Tµν (1)

the quintessential expression for this space curvature, contains the ratio c4/G
where c is the speed of light and G is Newton’s gravitational constant. This
ratio has the units of force and it can be argued [5] that c4/G is the magnitude
of the universal superforce of Davies’ first observation.

The modern vacuum is closely related to the ZP field energy which persists
even at the absolute zero of temperature where classically all motion ceases [2]
and where the vacuum energy density spectrum is generally assumed to cover
all frequencies from zero to infinity. However, Sakharov [6,4] argues from a
relativistic vacuum-fluctuation model for gravity that Newton’s gravitational
constant G should be determined by the equation

G =
2Ac5

h̄ω2
c

or ωc =
(

2Ac5

h̄G

)1/2

(2)

where ωc is an effective Planck cutoff frequency for the ZP-fluctuation spectrum
of the vacuum and where the constant A is of unity order. In effect, the fre-
quency range of the energy density spectrum is truncated at the upper frequency
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ωc. Furthermore, the inverse relationship between G and ωc, and the weakness
of the gravitational force imply that this effective cutoff frequency must be very
large (but not infinite as G 6= 0), a result that prompted Sakharov to note that
ωc must be related to “the heaviest particles existing in nature”.

In a stochastic-electrodynamic (SED) calculation, Puthoff [7] realizes Sakharov’s
hypothesis of the last paragraph in a fully self-consistent way from a point-
particle, ZP-fluctuation model for gravity. In the process he calculates the
cutoff frequency to be ωc =

√
πω∗ (ω∗ = m∗c

2/h̄ is the Planck frequency for the
Planck mass m∗ [4]), yielding the constant A = π/2 ∼ 1 for (2). Although the
static SP vacuum calculations to follow cannot determine this cutoff frequency,
the results of the calculations will agree in every other aspect with both the
Sakharov and Puthoff calculations, thereby lending significant support to the
new vacuum model.

If it is assumed that nature is controlled by a single superforce, then this force
must certainly be responsible for the two well-known static forces of Newton and
Coulomb. This conclusion suggests that the vacuum force which is derived from
the superforce and its associated SP vacuum state must in some way reflect
the 1/r2 nature of these static forces, and provides a starting point for the
theoretical calculations of the next section. Emerging from that section will be
a SP theory that defines the gravitational, Planck, and fine-structure constants
and the free-space permittivities; that unifies both the Newton and Coulomb
forces under a superforce with the Heaston magnitude c4/G [5]; and that shows
the superforce to be the source of the well-established ZP electromagnetic fields.

A ‘Summary and Discussion’ section that takes a closer look at the vacuum
force; that briefly relates the present theory to classical electron theory and the
quantum mechanics of the free particle ends the paper.

2 A Super-Particle Vacuum

The section begins by assuming the static Newton and Coulomb forces to be
proportional to the same universal force F∗ and develops equivalent equations
for these forces. Three normalization constants, e2

∗, m2
∗, and r2

∗, are generated
in addition to the two ratios G = e2

∗/m2
∗ and α = e2/e2

∗. The first ratio provides
a fundamental definition for Newton’s gravitational constant in terms of two of
the normalization constants. Here the constant α is merely a convenient way of
writing the ratio e2/e2

∗. At this point, the equations are nothing more than a
mathematical curiosity awaiting further development to give them meaning.

In the next step the universal force F∗ is set equal in magnitude to the
superforce c4/G of the Einstein equation (1), leading to two more ratios e2

∗/r2
∗ =

c4/G and m2
∗/r2

∗ = c4/G2. Eliminating G between these two ratios leads to the
equation r∗m∗c = e2

∗/c between only the normalization constants. Now, if a
value for r∗ were given, then both e∗ and m∗ could be determined and the
results checked to see if the first ratio in the preceding paragraph does indeed
numerically yield the gravitational constant. If that numerical value is correct,
then the value chosen for r∗ is also correct, leading to the values that both e∗
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and m∗ must assume. The gravitational constant calculation provides the first
check on the self-consistency of the development.

Having determined the magnitudes of all the normalization constants, the
constant α and both sides of the equation r∗m∗c = e2

∗/c can now be evaluated.
The calculation will show α to be the fine-structure constant. Also, both sides
of the equation will agree numerically, providing another self-consistency check
on the development. Furthermore, the calculations will show e2

∗/c to be the
(reduced) Planck constant and the corresponding equation to be the definition
of the Compton wavelength relationship in terms of the normalization constants.
This last result shows the normalization constants to be the viable parameters
(e∗,m∗,r∗) of an elementary particle.

With the definition for the Planck constant established, the relationship be-
tween it and the gravitational constant shows the particle (e∗,m∗,r∗) defined
above to be the SP cutting off the vacuum-fluctuation spectrum. The second
quantization of the corresponding single-particle field would then lead to the SP
vacuum state. This result is followed immediately by the results of a SED cal-
culation showing F∗ to be the origin of the well-established ZP electromagnetic
fields, thus independently re-affirming the concept of F∗ as a universal force.

Finally, the calculations end by showing the SP vacuum to be polarizable.
Another self-consistency check is provided here with regard to the mks value
of the free-space magnetic permittivity (permeability). So, let the calculations
begin.

The static gravitational and electrical forces acting between two charged
elementary particles are given by the Newton and Coulomb equations

Fgr(r) = −m1m2G

r2
and Fel(r) = ±e2

r2
(3)

where m1 and m2 are the particle masses and e is the observed electronic charge.
These are classical equations so r must be larger than the larger of the two
Compton radii (reduced Compton wavelengths) associated with the masses m1

and m2. Since both forces are assumed to be proportional to a single universal
force F∗, it will be necessary to ‘normalize out’ the units of the mass product
m1m2, the radius squared r2, and the charge product e2 in order to effect this
assumption. Choosing the corresponding normalization constants to be m2

∗, r2
∗

and e2
∗ respectively, leads from the equations in (3) to the equations

Fgr(r) = −
(r∗

r

)2 m1m2

m2
∗

F∗ and Fel(r) = ±
(r∗

r

)2
(

e

e∗

)2

F∗ (4)

where now both Fgr and Fel are proportional to F∗ as desired. It is clear that
for these equations to reduce to the initial two, the three equations in

F∗ =
m2

∗G

r2
∗

=
e2
∗

r2
∗

(5)

must be satisfied simultaneously. Finally, inserting the second expression for
F∗ into the equations of (4) leads to (inserting the first expression for F∗ is
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unproductive)

Fgr(r) = −
m1m2

m2
∗

e2
∗

r2
and Fel(r) = ±α

e2
∗

r2
(6)

where α ≡ e2/e2
∗. At this point the equations in (6) are just a mathematical

curiosity, although the definition G = e2
∗/m2

∗ (from the second equation in (5))
for the gravitational constant in terms of two of the normalization constants
has been generated. For lack of a better name, the force e2

∗/r2 in (6) will be
referred to as the ‘vacuum force’.

Setting the magnitude of the force F∗ equal to the superforce c4/G of the
Einstein equation (1) allows the first equation in (5) to be solved for G (=
r∗c

2/m∗) which can be substituted back into (5) to reexpress F∗ in terms of
only the normalization constants:

F∗ =
m∗c

2

r∗
=

e2
∗

r2
∗

. (7)

The second equation in (7) yields

r∗m∗c =
e2
∗
c

(≡ h̄) (8)

where the parenthesis will be discussed later. Note that both (7) and (8) required
setting F∗ = c4/G. Alternatively, setting F∗ to c4/G in (5) also yields the ratios
e2
∗/r2

∗ = c4/G and m2
∗/r2

∗ = c4/G2 which will be useful below to determine the
magnitudes of e∗ and m∗ from r∗.

The formal development from (3) to (8) becomes more compelling when the
magnitudes of the normalization constants are identified. Assigning a value to
the normalization constant r∗ will allow the values of e∗ and m∗ to be determined
from the two equations at the end of the previous paragraph. A reasonable
choice for r∗ is the Planck length L∗ [4] as the superforce F∗ can be reasonably
assumed to apply to the Planck level of forces. Making this choice (r∗ = 1.616×
10−33 [cm]) sets the value of m∗ to the Planck mass (2.177 × 10−5 [gm]) and
the value of e∗ to 5.623× 10−9 [esu]. With these values for m∗ and e∗, the ratio
G = e2

∗/m2
∗ does indeed lead to the correct value (6.673× 10−8 [dyn cm2/gm2])

for the gravitational constant — so the results thus far are self-consistent. Also,
the unknown ratio α = e2/e2

∗ = 7.297 × 10−3 when the value of the observed
electronic charge e = 4.803× 10−10 [esu] is inserted. Since the value calculated
for α is the fine-structure constant, the ratio e2/e2

∗ is the fundamental definition
for that constant.

Calculating the ratio e2
∗/c gives the same value (1.054 × 10−27 [erg sec]) as

the (reduced) Planck constant h̄. Therefor, the ratio e2
∗/c defines the Planck

constant, showing the nature of that constant to be a ratio of squared charge
and velocity rather than a product of energy and time. The fact that the lhs
of (8) equals the rhs numerically provides another self-consistency check. The
Compton relation (8) qualifies the constants (e∗,m∗,r∗) as the parameters of an
elementary particle.
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The particle (e∗,m∗,r∗) defined above and the definition of Planck’s constant
allow the gravitational constant to be expressed as

G =
e2
∗

m2
∗

=
ch̄

(h̄ω∗/c2)2
=

c5

h̄ω2
∗

=
2(π/2)c5

h̄ω2
c

(9)

where ωc =
√

πω∗ (see the Introduction) was used to obtain the final expression.
This result agrees precisely with the Sakharov[6]-Puthoff[7] results from the
discussion of equation (2). In the spirit of those results, then, e∗ and m∗ must
be the charge and mass of that ‘heaviest particle’ envisioned by Sakharov to cut
off the ZP-fluctuation spectrum of the vacuum.

Second quantization of the SP wavefunction (not pursued in the present text)
would lead to the SP vacuum consisting of negative energy states and the col-
lection of anti-SPs [2]. The ZP electromagnetic fields from these multi-particle
states should manifest themselves in the ZP vacuum fields of both QED and
SED. Evidence that this is so is obtained from the truncated SED representation
of the ZP electric field [7,8] given by

Ezp = Re

2∑

σ=1

∫ kc

0

d3k êAk exp[i(k · r − ωt + Θ(k, σ))] (10)

where kc = ωc/c is the cutoff wavenumber and ‘Re’ stands for ‘real part of’.
The amplitude spectral density in (10) is given by

Ak =
(

h̄ω

2π2

)1/2

= e∗

(
k

2π2

)1/2

(11)

where h̄ = e2
∗/c and k = ω/c have been used to obtain the final expression. The

field in (10) can be more recognizably expressed as

Ezp =
(π

2

)1/2 F∗

e∗
Izp (12)

where the expectation value < I2
zp >= 1 is calculated over the random phase

Θ(k, σ) in (10), and leads to the rms value of the electric field equal to the
factors multiplying Izp in (12). This result shows the well-established ZP elec-
tromagnetic fields, Ezp and Hzp, to be proportional to the superforce field F∗/e∗,
suggesting that F∗ is the source of those ZP fields.

Viewed in terms of the bare charge, the SP vacuum is highly polarizable:
comparing the second equations in (3) and (6) leads to the conclusion that the
electronic charge e is the screened version of the bare charge e∗, so the SP
vacuum polarizability could be characterized by

ε =
e∗
e

=
1√
α

.= 12 and χe =
e∗ − e

4πe
(13)

which are an effective dielectric constant and electric susceptibility respectively.
These constants are, of course, unobserved because the bare charge is always
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screened. Nevertheless, this high vacuum polarizability is real — indeed, the
fine-structure constant owes its existence to this effect. Calculations in the
next paragraph illustrate other hidden and important facets of the vacuum-SP
connection.

Shifting into mks units for the duration of the present paragraph, the free-
space electric and magnetic permittivities can be expressed in terms of the SP
parameters by changing the Gaussian units of (8) to mks units and solving for
ε0:

ε0 =
e2
∗

4πr∗m∗c2
and µ0 =

4πr∗m∗

e2
∗

[mks] (14)

where the magnetic permittivity µ0 comes from µ0ε0 = 1/c2. It is noteworthy
that the ratio r∗m∗/e2

∗ in mks units (with e∗ = 1.876×10−18 [Coulomb] from the
earlier esu units) is numerically equal to 10−7 as it must since µ0 = 4π×10−7 in
those units. A dimensional check on the equations in (14) shows them to have
the proper mks dimensions also. These agreements in magnitude and dimen-
sionality represent another check on the self-consistency of the development and
provide further evidence that the SP (e∗,m∗,r∗) is a “creature” of the vacuum
state. The ratio of electric-to-magnetic plane-wave field amplitudes becomes

E

H
=

(
µ0

ε0

)1/2

=
4πr∗m∗c

e2
∗

.= 377 [ohms] [mks] (15)

where again the magnitude and dimensions are correct.
The results of the previous paragraph become

ε =
e2
∗

r∗m∗c2
= 1 and µ =

r∗m∗c
2

e2
∗

= 1 (16)

and
E

H
=

(µ

ε

)1/2

=
r∗m∗c

2

e2
∗

= 1 (17)

in Gaussian units.

3 Summary and Discussion

What started out as a set of normalization constants (e2
∗,m

2
∗,r

2
∗) ended up as

the parameters (e∗,m∗,r∗) of an elementary super-particle. To metamorphose
from normalization constants to particle parameters, these parameters had to
numerically satisfy a remarkable number of conditions and equations simulta-
neously: the three equations in (5) in addition to F∗ = c4/G; the values for
G, h̄, and α; the Compton relation (8); the Sakharov condition (2); equation
(12) for the ZP electric field; and the vacuum equations from (14) to (17). The
Compton relation (8) shows that these parameters define an elementary particle
(e∗,m∗,r∗) and, through the superforce in (7), the SP vacuum. This vacuum
state is, as witnessed by equations (14) through (17), intimately connected to
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the free-space vacuum of electromagnetic theory and appears to be the source
of the ZP vacuum fields.

The SP calculations and the Puthoff calculations in [7] are radically different
in their respective approaches, yet the two produce remarkably similar results in
those areas where they intersect. This kind of agreement between two theories
significantly strengthens both. The calculations in [7] derive the gravitational
constant G = πc5/h̄ω2

c = ch̄/m2
∗ which is the same as the SP result if the

substitution h̄ = e2
∗/c is made. For like particles, then, both theories lead to

Fgr(r) = −
m2G

r2
= −

m2(e2
∗/m2

∗)
r2

= −
(

r∗
rc

)2
e2
∗

r2
(18)

where the ratio (r∗/rc)2 comes from r∗m∗ = rcm which originates in the Comp-
ton relations. This ratio converts the so-called vacuum force e2

∗/r2 into the
gravitational force although the static SP theory presented here is incapable of
explaining that ratio’s electromagnetic origin. Puthoff, however, has shown the
gravitational force to be a long range van der Waals force, so this ratio is a
mathematical construct that accounts for the ZP averaging process germane to
that force [7]. It could also be argued that the vacuum force is a mathemat-
ical construct, but at this early stage of the SP development it doesn’t seem
so — two pieces of information argue for that conclusion. The first is that the
Coulomb force in (6) is also proportional to the vacuum force even though the
Coulomb force is significantly different from the gravitational force. The second
indication comes from the calculations immediately below.

The quantum field (QED) expression [9,2] for the effective Coulomb potential
Vef(r) of two identical point charges of mass m separated by a distance r (� rc)
is

Vef(r) =
e2

r

[
1 +

α

2
√

π

(rc

r

)3/2

exp(−2r/rc)
]

(19)

where rc (= e2
∗/mc2) is the Compton radius associated with the particles. The

second term in (19) represents the local screening of the observed e-charges due
to their interaction with the electron-positron field from the Dirac ‘sea’. Using
α = e2/e2

∗ changes (19) to

Vef(r) =
e2
∗
r

[
α +

α2

2
√

π

(rc

r

)3/2

exp(−2r/rc)
]

(20)

where the global screening of the bare e∗-charges represented by the first term
in (20) is, of course, due to the basic 1/r2 nature of the vacuum force. Again,
the second term represents the local screening. The form of (20) suggests an
intimate connection between the SP vacuum (first term) and the Dirac ‘sea’
(second term), the Dirac ‘sea’ appearing perhaps as an offspring of the parent SP
vacuum. Heuristically, equation (20) can be taken a step further by expanding
it to include the gravitational potential:

Vef(r) =
e2
∗
r

[
−

(
r∗
rc

)2

+ α +
α2

2
√

π

(rc

r

)3/2

exp(−2r/rc)

]
(21)
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where the first and second terms represent the Newton and Coulomb potentials
corresponding to (6). Dynamically speaking, the two bare charges responsible
for (21) are separated by an average distance r and perform a small random
dance around their average positions due to agitation from the ZP vacuum
fields. The point of this calculation, however, is that the universal nature of the
vacuum force multiplying the bracket in (21) survives even to the QED third
term.

The Compton radius r∗ is related to those of the proton and electron through
the coupling e2

∗ in the string of Compton relations (the subscripts p and e refer
to the proton and electron respectively)

r∗m∗c
2 = rpmpc

2 = remec
2 = e2

∗. (22)

The premature breakdown in classical electron theory is eliminated by assigning
this bare charge e∗ to the electron rather than the screened version e. For
then the Compton electron radius re (= e2

∗/mec
2) is that distance at which

classical breakdown is expected as the electron is approached rather than the
much smaller and quantum mechanically troublesome [2] classical radius r0 (=
e2/mec

2).
Finally, the free particle Schrödinger, Klein-Gordon, and Dirac equations

share similar plane-wave solutions of the form

Ψ = A exp(iS/h̄) (23)

where the dynamic phase function S = P ·r−Et is a solution of the appropriate
Hamilton-Jacobi equation [10]. Rewriting (23) in the form

icS = ch̄ log (Ψ/A) = e2
∗ log (Ψ/A) (24)

reveals the bare-charge coupling ch̄ = e2
∗ connecting the particle and its classical

Lagrangian L = dS/dt to the particle’s quantum mechanical phase log (Ψ/A)/i
and the SP vacuum.
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